Convective Heat Transfer Characteristics of Graphene Dispersed Nano Fluids

نویسندگان

  • Dilip Kumar
  • K Dilip Kumar
چکیده

Nano fluids are having wide area of applications in heat transfer equipments. In the present work graphene nanoparticles, Dispersed in De-ionized water (DI), Ethylene Glycol (EG) based nano fluids were developed. Thermal conductivity and convective heat transfer properties of these nanofluids were systematically investigated. In the present investigation thermal convection of glycol based nanofluids with different volumetric concentrations and fractions is experimentally determined in the temperature range of 30 °C to 80 °C graphene nano particles with average particle size of 11 nm-15 nm is used for the preparation of glycol based nano fluids. Basefluid used in the present investigation is 70% water and 30% ethylene glycol by weight. Thermal convection of graphene nano fluids is measured for different volume concentrations in the range of 0.2%-1.0% of nano particles. Based on the experimental results It is concluded that thermal convection of graphene nanofluids considered in the present investigation increases with increase in percentage of volume concentrations of graphene particles at different temperatures. These results provide insights in the increase of convective heat transfer in the base fluid temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical Scrutinization of Three Dimensional Casson-Carreau Nano Fluid Flow

This study presents the computational analysis of three dimensional Casson and Carreau nanofluid flow concerning the convective conditions. To do so, the flow equations are modified to nonlinear system of ODEs after using appropriate self-similarity functions. The solution for the modified system is evaluated by numerical techniques. The results show the impacts of involving variables on flow c...

متن کامل

Simulation of Convective Heat Transfer of a Nanofluid in a Circular Cross-section

The CFD simulation of heat transfer characteristics of a nanofluid ina circular tube under convective heat transferwas considered using the fluentsoftware (version 6.3.26) in the laminar flow. Al2O3nano- particles in water with concentrations of 0.5, 1.0, 1.5, 2 and 2.5% were studied in the simulation. All thermo-physical properties of nanofluids were temperature independent. It was concluded t...

متن کامل

Convection Heat Transfer Modeling of Nano- fluid Tio2 Using Different Viscosity Theories

In this paper, the effects of adding nanoparticles including Tio2 to a fluid media for purpose of free convection heat transfer improvement were analyzed. The free convection was assumed to be in laminar flow regime and the solutions and calculations were all done by the integral method. Water, as a Newtonian fluid, was considered the base fluid (water) and all the thermo physical properties of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012